‎multistep collocation method for nonlinear delay integral equations

نویسندگان

parviz darania

department of mathematics, faculty of science, urmia university, p.o.box 5756151818, urmia-iran.

چکیده

‎the main purpose of this paper is to study the numerical solution of nonlinear volterra integral equations with constant delays, based on the multistep collocation method. these methods for approximating the solution in each subinterval are obtained by fixed number of previous steps and fixed number of collocation points in current and next subintervals. also, we analyze the convergence of the multistep collocation method when used to approximate smooth solutions of delay integral equations. finally, numerical results are given showing a marked improvement in comparison with exact solution.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎Multistep collocation method for nonlinear delay integral equations

‎The main purpose of this paper is to study the numerical solution of nonlinear Volterra integral equations with constant delays, based on the multistep collocation method. These methods for approximating the solution in each subinterval are obtained by fixed number of previous steps and fixed number of collocation points in current and next subintervals. Also, we analyze the convergence of the...

متن کامل

Superconvergence analysis of multistep collocation method for delay functional integral equations

In this paper, we will present a review of the multistep collocation method for Delay Volterra Integral Equations (DVIEs) from [1] and then, we study the superconvergence analysis of the multistep collocation method for DVIEs. Some numerical examples are given to confirm our theoretical results.

متن کامل

superconvergence analysis of multistep collocation method for delay functional integral equations

in this paper, we will present a review of the multistep collocation method for delay volterra integral equations (dvies) from [1] and then, we study the superconvergence analysis of the multistep collocation method for dvies. some numerical examples are given to confirm our theoretical results.

متن کامل

SPLINE COLLOCATION FOR NONLINEAR FREDHOLM INTEGRAL EQUATIONS

The collocation method based on cubic B-spline, is developed to approximate the solution of second kind nonlinear Fredholm integral equations. First of all, we collocate the solution by B-spline collocation method then the Newton-Cotes formula use to approximate the integrand. Convergence analysis has been investigated and proved that the quadrature rule is third order convergent. The presented...

متن کامل

A New Discrete Collocation Method For Nonlinear Fredholm Integral Equations

In this paper, the numerical solution of nonlinear Fredholm integral equations of second kind is considered by Sinc method. This numerical method combines a discrete Sinc collocation method with the Newton iterative process that involves solving a nonlinear system of equations. We provide an error analysis for the method. So far approximate solutions with polynomial convergence have been report...

متن کامل

Convergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations

In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
sahand communications in mathematical analysis

جلد ۳، شماره ۲، صفحات ۴۷-۶۵

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023